Projection pursuit regression and principal component regression on statistical downscaling using artificial neural network for rainfall prediction in Jember

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Downscaling Modeling Using Support Vector Regression for Rainfall Prediction

Statistical downscaling is an effort to link global scale to local scale variable. It uses GCM model which usually used as a prime instrument in learning system of various climate. The purpose of this study is as a SD model by using SVR in order to predict the rainfall in dry season; a case study at Indramayu. Through the model of SD, SVR is created with linear kernel and RBF kernel. The result...

متن کامل

Principal Component Regression with Artificial Neural Network to Improve Prediction of in Electricity Demand

Planning for electricity demand is a key factor for the success in the development of any countries. Such success can only be achieved if the demand for electricity is predicted correctly and accurately. This study introduces a new hybrid approach that combines Principle Component Regression (PCR) and Back-Propagation Neural Networks (BPNN) techniques in order to improve the accuracy of the ele...

متن کامل

The efficiency of Artificial Neural Network, Neuro-Fuzzy and Multivariate Regression models for runoff and erosion simulation using rainfall simulator

1- INTRODUCTION According to the complexity of environmental factors related to erosion and runoff, correct simulation of these variables find importance under rain intensity domain of watershed areas.  Although modeling of erosion and runoff by Artificial Neural Network and Neuro-Fuzzy based on rainfall-runoff and discharge-sediment models were widely applied by researchers, scrutinizing Arti...

متن کامل

Principal component regression with artificial neural network to improve prediction of electricity demand

Planning for electricity demand is a key factor for the success in the development of any countries. Such success can only be achieved if the demand for electricity is predicted correctly and accurately. This study introduces a new hybrid approach that combines Principle Component Regression (PCR) and Back-Propagation Neural Networks (BPNN) techniques in order to improve the accuracy of the ele...

متن کامل

A Comparison of Projection Pursuit and Neural Network Regression Modeling

Two projection based feedforward network learning methods for modelfree regression problems are studied and compared in this paper: one is the popular back-propagation learning (BPL); the other is the projection pursuit learning (PPL). Unlike the totally parametric BPL method, the PPL non-parametrically estimates unknown nonlinear functions sequentially (neuron-by-neuron and layer-by-Iayer) at ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics: Conference Series

سال: 2021

ISSN: 1742-6588,1742-6596

DOI: 10.1088/1742-6596/1872/1/012023